HiPerFAST ${ }^{\text {TM }}$ IGBT Lightspeed ${ }^{\text {TM }}$ Series

Symbol	Test Conditions	Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified) min. ${ }^{\text {typ. }}$ max.			
$B V_{\text {ces }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	600			V
$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=\mathrm{V}_{\text {GE }}$	2.5		5.0	V
$\mathrm{I}_{\text {ces }}$	$\mathrm{V}_{\text {CE }}=0.8 \mathrm{~V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		200	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		1.5	mA
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\text {CE(sat) }}$	$\mathrm{I}_{\mathrm{C}} \quad=\mathrm{I}_{\text {CE90 }}, \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$		2.1	2.7	V

IXGH 12N60CD1

Features

- Very high frequency IGBT
- New generation HDMOS ${ }^{\text {TM }}$ process
- International standard package JEDEC TO-247AD
- High peak current handling capability

Applications

- PFC circuit
- AC motor speed control
- DC servo and robot drives
- Switch-mode and resonant-mode power supplies
- High power audio amplifiers

Advantages

- Fast switching speed
- High power density

\begin{tabular}{|c|c|c|c|}
\hline Symbol \& \multicolumn{3}{|l|}{\begin{tabular}{l}
Test Conditions \\
Characteristic Values (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), unless otherwise specified) min. typ. |max.
\end{tabular}} \\
\hline \(\mathrm{g}_{\text {ts }}\) \& \begin{tabular}{l}
\[
I_{C}=I_{\text {c90 }} ; V_{C E}=10 \mathrm{~V},
\] \\
Pulse test, \(\mathrm{t} \leq 300 \mu \mathrm{~s}\), duty cycle \(\leq 2 \%\)
\end{tabular} \& 11 \& S \\
\hline \[
\begin{aligned}
\& \mathrm{C}_{\text {ies }} \\
\& \mathrm{C}_{\text {oes }} \\
\& \mathrm{C}_{\text {res }}
\end{aligned}
\] \& \(\} \mathrm{V}_{\text {CE }}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\) \& 860
100
15 \& pF
pF
pF \\
\hline \[
\begin{aligned}
\& \mathbf{Q}_{\mathrm{g}} \\
\& \mathbf{Q}_{\mathrm{ge}} \\
\& \mathbf{Q}_{\mathrm{gc}}
\end{aligned}
\] \& \(\} \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{G E}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{~V}_{\text {CES }}\) \& 32
10
10 \& nC
nc
nc \\
\hline \[
\begin{aligned}
\& t_{\mathrm{d}(\mathrm{lon})} \\
\& t_{\mathrm{ri}} \\
\& t_{\mathrm{d}(\mathrm{fof})} \\
\& t_{\mathrm{tif}^{\prime}} \\
\& \mathrm{E}_{\mathrm{off}}
\end{aligned}
\] \& \begin{tabular}{l}
Inductive load, \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)
\[
\begin{aligned}
\& \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 90}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~L}=300 \mu \mathrm{H} \\
\& \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}}, \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\text {off }}=18 \Omega
\end{aligned}
\] \\
Remarks: Switching times may increase for \(\mathrm{V}_{\text {CE }}\) (Clamp) \(>0.8 \mathrm{~V}_{\text {CES }}\), higher \(\mathrm{T}_{\mathrm{J}}\) or increased \(\mathrm{R}_{\mathrm{G}}\)
\end{tabular} \& 20
20
60
55
0.09 \& ns
ns
ns
ns \\
\hline \[
\begin{aligned}
\& \mathbf{t}_{\mathrm{d}(0 \mathrm{n})} \\
\& \mathbf{t}_{\mathrm{ri}} \\
\& \mathrm{E}_{\mathrm{on}} \\
\& \mathbf{t}_{\mathrm{doff}} \\
\& \mathbf{t}_{\mathrm{tifl}^{2}} \\
\& \mathrm{E}_{\mathrm{off}}
\end{aligned}
\] \& \begin{tabular}{l}
Inductive load, \(\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\[
\begin{aligned}
\& \mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\text {c90 }}, \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~L}=300 \mu \mathrm{H} \\
\& \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}}, \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\mathrm{off}}=18 \Omega
\end{aligned}
\] \\
Remarks: Switching times may increase for \(\mathrm{V}_{\text {CE }}\) (Clamp) \(>0.8 \mathrm{~V}_{\text {CESS }}\), higher \(\mathrm{T}_{J}\) or increased \(\mathrm{R}_{\mathrm{G}}\)
\end{tabular} \& 20
20
0.5
85
85
0.27 \& \begin{tabular}{|cc}
\& ns \\
\& ns \\
\& mJ \\
180 \& ns \\
180 \& ns \\
0.60 \& mJ
\end{tabular} \\
\hline \[
\begin{aligned}
\& \mathbf{R}_{\mathrm{tusc}} \\
\& \mathbf{R}_{\mathrm{thck}}
\end{aligned}
\] \& IGBT \& 0.25 \& 1.25

KW

\hline
\end{tabular}

Reverse Diode (FRED)

Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Test Conditions min.	typ.	max.
$V_{\text {F }}$	$\begin{aligned} I_{F}=15 \mathrm{~A} ; \mathrm{T}_{\mathrm{VJ}} & =150^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{VJ}} & =25^{\circ} \mathrm{C} \end{aligned}$	1.7	2.5 V
$\mathrm{I}_{\text {gm }}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{R}}=100 \mathrm{~V} ; \mathrm{I}_{\mathrm{F}}=25 \mathrm{~A} ;-\mathrm{di} / \mathrm{Ft}=100 \mathrm{~A} / \mu \mathrm{s} \\ \mathrm{~L}_{\mathrm{K}}<0.05 \mu \mathrm{H} ; \mathrm{T}_{\mathrm{v} J}=100^{\circ} \mathrm{C} \end{array}\right.$	2	2.5
t_{r}	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} ;-\mathrm{di} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s} ; \\ & \mathrm{V}_{\mathrm{R}}=30 \mathrm{VT} \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	35	ns
$\mathbf{R}_{\text {tusc }}$	Diode		1.6 KW

TO-247 AD Outline

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A^{2}	4.7	5.3	.185	.209
$\mathrm{~A}_{1}$	2.2	2.54	.087	.102
$\mathrm{~A}_{2}$	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
$\mathrm{~b}_{1}$	1.65	2.13	.065	.084
$\mathrm{~b}_{2}$	2.87	3.12	.113	.123
C	.4	.8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
e	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L 1		4.50		.177
$\varnothing \mathrm{OP}$	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

